If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+9.99x-0.01=0
a = 1; b = 9.99; c = -0.01;
Δ = b2-4ac
Δ = 9.992-4·1·(-0.01)
Δ = 99.8401
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9.99)-\sqrt{99.8401}}{2*1}=\frac{-9.99-\sqrt{99.8401}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9.99)+\sqrt{99.8401}}{2*1}=\frac{-9.99+\sqrt{99.8401}}{2} $
| (1/8)^3x+4=(1/4)^-2x+4 | | -4+2x=5-9x | | 2-7v=-5v+6 | | y+3/12=5/6 | | (3x+15+(11x-5))/2=47 | | -(7/2)+(3x/2)=(5/3)+(x/3) | | -336+2a+72=-120 | | 5(2x-8)=3x+19 | | 6^-9x=15 | | 0.06-0.02(x+2)=-0.02(2-x) | | -336+2*x+72=-120 | | 3x-3=7-x | | 8w=-25 | | 5j−5j+j−j+j=9 | | 1.15=(x-100)/15 | | 26-q2=100+q+3q2 | | (25−3x)/2=(6x+8)/3 | | x/4+5=41 | | 4r-12=36 | | 6(z+2)-2=6z+10 | | -1.15=(x-100)/15 | | -6x+5=3x+77 | | 7(8-4x)=4-5x | | 4(3y+11)=20 | | 8a-5a=10 | | 13y-8y-7=90.80 | | 4y-28=83+y | | 15+.05y=59 | | 7x/6=31/6 | | 15x+87=350 | | y/10=5 | | 3m+6=4(m+2) |